The Minnesota Sex Offender Screening Tool-4 (MnSOST-4)

Grant Duwe, Ph.D.
Director, Research and Evaluation
April 2017
Email: grant.duwe@state.mn.us
Overview

- Development and validation of the MnSOST-4
- Sex Offender Risk Assessment in MN
- Principles of Effective Risk Assessment
- MnSOST-4 Items
- Predictive Performance Results
- Conclusions
Sex Offender Risk Assessment in MN

- Minnesota Sex Offender Screening Tool
 - MnSOST = 1996 (Epperson et al.)
 - MnSOST-R = 1999 (Epperson et al.)
 - MnSOST-3 = 2012 (Duwe and Freske)

- MnSOST series of tools used in various ways
 - Assign risk levels of community notification purposes
 - Prioritize sex offenders for prison-based SO treatment
 - Help determine level of post-release supervision
 - Screen for involuntary civil commitment

- Minnesota DOC also scored sex offenders on Static-99 since mid-2000s
Development of MnSOST-4

- MnSOST-3
 - Debut in 2012
 - Uses 4-year follow-up period for sexual recidivism
 - Performance data available in early 2017 for 2012 releases

- MnSOST-3 data provide a performance baseline

- Can a better assessment be developed?

- Applying proven and promising practices
 - What does the literature say about developing and validating a risk assessment instrument?
Principles of Effective Risk Assessment

1. Scoring Method
2. Classification Method
3. Item Selection and Measurement
4. Internal Validation Method
5. Evaluating Predictive Performance
6. Bias Testing
7. Feedback Loop
Scoring Method

- Process by which items on instrument are populated
 - Manual or automated
 - Vast majority = manual scoring

- Manual Scoring
 - Inter-rater disagreement is inevitable
 - Inter-rater disagreement \Rightarrow lack of reliability \Rightarrow lower predictive validity

- If assessment is scored manually
 - Inter-rater reliability assessment is a must
Classification Method

- Process by which item values on instrument are calculated into a risk score

- 3 Main Types of Classification Methods
 - Burgess (simple, summative algorithm)
 - Statistical (logistic regression)
 - Machine Learning (Random Forest, boosting, etc.)

- Statistical/ML algorithms much better than Burgess

- “No Free Lunch”: no single best algorithm

- Necessary to test multiple methods
 - Increase odds of identifying optimal algorithm for data
Item Measurement and Selection

- Item Selection guided by theory
- Among theoretically-relevant predictors, what is best method?
 - No clear consensus
 - Examples: bootstrapping, stepwise, gain ratio
- Items often measured at nominal/ordinal levels
 - Due to popularity of Burgess method
- Continuous measures can help boost predictive performance
 - Example: age at release
Internal Validation Method

• Internal Validity: can performance be reproduced on population underlying sample?

• 3 Main Internal Validation Methods

 • Split-Sample: most popular
 • Development/Training Set
 • Validation/Test Set

 • K-Fold: more efficient than split-sample

 • Bootstrap resampling: better than K-fold
Evaluating Predictive Performance

- Predictive Validity
 - Accuracy
 - Discrimination
 - Calibration

- Existing research: focused mainly on area under the curve (AUC) → only measures discrimination

- Multiple metrics should be used to evaluate predictive performance
Testing for Bias

- Recent concerns over disparate/adverse effects of risk assessment on racial/ethnic minorities

- Types of assessments
 - “Low Stakes”
 - Prioritize for programming, determine institutional custody levels
 - “High Stakes”
 - Individual’s liberty hangs in the balance; pre-trial release, sentencing, parole

- Bias testing should be routine
 - But should also be imperative for high stakes assessments
Feedback Loop

• When should an assessment be updated?
 • Past research = very little guidance

• Use a measurement feedback loop to improve predictive performance
 • “Challenger” unseats an “incumbent”

• Compare MnSOST-4 with other assessments that have been used on MN sex offenders
 • MnSOST-R
 • Static-99
 • MnSOST-3
Dataset

- 5,745 sex offenders released from MN prisons between 2003 and 2012

- Sexual Recidivism
 - Reconviction for new sex offense within 4 years
 - 130 were recidivists; base rate = 2.3%

- Prior assessments evaluated
 - MnSOST-R
 - Static-99
 - MnSOST-3
Applying Promising/Proven Practices

- Tested multiple classification methods
- Used split-sample internal validation method
 - Training set: 2003-2009 releases
 - Test set: 2010-2012 releases
- Item Selection = Bootstrap resampling
- Evaluated performance with multiple metrics
- Tested for bias
- MnSOST-4 = manually scored
 - Inter-reliability assessment
MnSOST-4 Items

1. Total Violent Offenses
2. Felony/Violent Offending Ratio
3. Violations of Orders for Protection
4. Stranger Victims (sex offenses)
5. Public Location (sex offenses)
6. Male Victim Specialization (sex offenses)
7. Multiple Predatory Offenses/Multiple Victim Age Groups
8. Suicidal Tendencies
9. Complete SO/CD treatment
10. Stake in Conformity Index: marriage, education and employment
11. Age at Release
12. Release Violator
13. Unsupervised Release
Predictive Performance Results

- MnSOST-4 significantly outperformed competitors
 - Much better than MnSOST-R and Static-99
 - Moderate improvement over MnSOST-3

- Regularized logistic regression = Random Forests
 - Very little difference in predictive performance

- Bias Testing
 - Performance similar for Whites and Non-Whites
Predictive Performance Results

<table>
<thead>
<tr>
<th></th>
<th>ACC</th>
<th>PRC</th>
<th>H</th>
<th>AUC</th>
<th>RMSE</th>
<th>SHARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-2012 Test Set (N = 1,772)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularized Logistic Regression</td>
<td>0.981</td>
<td>0.224</td>
<td>0.180</td>
<td>0.835</td>
<td>0.131</td>
<td>0.418</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.981</td>
<td>0.216</td>
<td>0.163</td>
<td>0.851</td>
<td>0.132</td>
<td>0.416</td>
</tr>
<tr>
<td>MnSOST-R</td>
<td>0.981</td>
<td>0.033</td>
<td>0.012</td>
<td>0.626</td>
<td>0.133</td>
<td>0.304</td>
</tr>
<tr>
<td>2010-2012 Test Set (N = 1,604)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularized Logistic Regression</td>
<td>0.981</td>
<td>0.224</td>
<td>0.174</td>
<td>0.847</td>
<td>0.134</td>
<td>0.419</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.981</td>
<td>0.202</td>
<td>0.158</td>
<td>0.858</td>
<td>0.135</td>
<td>0.413</td>
</tr>
<tr>
<td>Static-99</td>
<td>0.981</td>
<td>0.047</td>
<td>0.022</td>
<td>0.654</td>
<td>0.137</td>
<td>0.314</td>
</tr>
<tr>
<td>2012 Test Set (N = 541)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularized Logistic Regression</td>
<td>0.976</td>
<td>0.154</td>
<td>0.117</td>
<td>0.765</td>
<td>0.149</td>
<td>0.373</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.976</td>
<td>0.150</td>
<td>0.117</td>
<td>0.786</td>
<td>0.151</td>
<td>0.376</td>
</tr>
<tr>
<td>MnSOST-3</td>
<td>0.975</td>
<td>0.118</td>
<td>0.099</td>
<td>0.716</td>
<td>0.138</td>
<td>0.355</td>
</tr>
</tbody>
</table>
Performance for Higher-Risk

• MnSOST used to guide risk level assignments
 • Risk Levels ➔ Community Notification

• Historical Risk Level Distribution
 • Level 1 (lower risk) = 55%
 • Level 2 (moderate risk) = 30%
 • Level 3 (higher risk) = 15%

• Identify the riskiest 15 percent (“Level 3’s”)
 • How well does each assessment do?
<table>
<thead>
<tr>
<th>Model</th>
<th>N</th>
<th>Recidivists</th>
<th>Rate</th>
<th>Captured</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-2012 Test Set (N = 266)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularized Logistic Regression</td>
<td>266</td>
<td>19</td>
<td>7.1%</td>
<td>57.6%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>266</td>
<td>18</td>
<td>6.8%</td>
<td>54.5%</td>
</tr>
<tr>
<td>MnSOST-R</td>
<td>266</td>
<td>10</td>
<td>3.8%</td>
<td>30.3%</td>
</tr>
<tr>
<td>2010-2012 Test Set (N = 241)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularized Logistic Regression</td>
<td>241</td>
<td>18</td>
<td>7.5%</td>
<td>58.1%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>241</td>
<td>18</td>
<td>7.5%</td>
<td>58.1%</td>
</tr>
<tr>
<td>Static-99</td>
<td>241</td>
<td>13</td>
<td>5.4%</td>
<td>41.9%</td>
</tr>
<tr>
<td>2012 Test Set (N = 81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularized Logistic Regression</td>
<td>81</td>
<td>6</td>
<td>7.4%</td>
<td>46.2%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>81</td>
<td>6</td>
<td>7.4%</td>
<td>46.2%</td>
</tr>
<tr>
<td>MnSOST-3</td>
<td>81</td>
<td>5</td>
<td>6.2%</td>
<td>38.5%</td>
</tr>
</tbody>
</table>
Inter-Rater Reliability

- **DOC staff (8 Raters) scored same 10 cases**
- **Intra-Class Correlation Coefficient (ICC)**
 - $> 0.95 = \text{excellent}$
 - $0.85 - 0.94 = \text{good}$
 - $0.75 - 0.84 = \text{adequate}$
 - $< 0.75 = \text{poor}$
- **Overall ICC = 0.90**
- **MnSOST-4 = “good” reliability**
Summary

- **MnSOST-4 Performance**
 - Warrants replacement of MnSOST-3

- **Classification Method**
 - RLR = relatively transparent and interpretable
 - Performed just as well as Random Forests

- **Ivory Tower vs. Real World**
 - Actual performance may not be as good
 - **MnSOST-3 performance**
 - 0.796 in development and validation study
 - 0.716 in current study
Wrapping Up

• Principles may not be “best practices”
 • But they are “better practices”

• Use of a feedback loop can be helpful
 • Progressively more difficult for challenger to unseat incumbent: better overall performance

• Use multiple measures and methods
 • Classification methods
 • Internal validation methods
 • Predictive performance